Domain Organization, Catalysis and Regulation of Eukaryotic Cystathionine Beta-Synthases
نویسندگان
چکیده
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme's catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme's catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.
منابع مشابه
Novel structural arrangement of nematode cystathionine β-synthases: characterization of Caenorhabditis elegans CBS-1
CBSs (cystathionine β-synthases) are eukaryotic PLP (pyridoxal 5 *-phosphate)-dependent proteins that maintain cellular homocysteine homoeostasis and produce cystathionine and hydrogen sulfide. In the present study, we describe a novel structural arrangement of the CBS enzyme encoded by the cbs-1 gene of the nematode Caenorhabditis elegans. The CBS-1 protein contains a unique tandem repeat of t...
متن کاملThe structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases.
The structure of the ketoreductase (KR) from the first module of the erythromycin synthase with NADPH bound was solved to 1.79 A resolution. The 51 kDa domain has two subdomains, each similar to a short-chain dehydrogenase/reductase (SDR) monomer. One subdomain has a truncated Rossmann fold and serves a purely structural role stabilizing the other subdomain, which catalyzes the reduction of the...
متن کاملHeme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy.
Cystathionine beta-synthase (CBS) plays a central role in homocysteine metabolism, and malfunction of the enzyme leads to homocystinuria, a devastating metabolic disease. CBS contains a pyridoxal 5'-phosphate (PLP) cofactor which catalyzes the synthesis of cystathionine from homocysteine and serine. Mammalian forms of the enzyme also contain a heme group, which is not involved in catalysis. It ...
متن کاملMolecular characterization of a cystathionine beta-synthase gene, CBS1, in Magnaporthe grisea.
CBS1 from Magnaporthe grisea is a structural and functional homolog of the cystathionine beta-synthase (CBS) gene from Saccharomyces cerevisiae. Our studies indicated that M. grisea can utilize homocysteine and methionine through a CBS-independent pathway. The results also revealed responses of M. grisea to homocysteine that are reminiscent of human homocystinuria.
متن کاملCystathionine beta synthase modulates senescence of human endothelial cells
Availability of methionine is known to modulate the rate of aging in model organisms, best illustrated by the observation that dietary methionine restriction extends the lifespan of rodents. However, the underlying mechanisms are incompletely understood. In eukaryotic cells, methionine can be converted to cysteine through the reverse transsulfuration pathway thereby modulating intracellular met...
متن کامل